初一的数学教案优质6篇

时间:2025-12-01 作者:betray

教案的结构应合理,确保每一部分都为学习打下基础,通过系统化的教案,教师能够将复杂的知识点简单化,易于学生理解,以下是心得范文网小编精心为您推荐的初一的数学教案优质6篇,供大家参考。

初一的数学教案优质6篇

初一的数学教案篇1

教学目标:

知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。

过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。

情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。

教学重点:

掌握有理数的两种分类方法

教学难点:

给定的数字将被填入它所属的集合中

教学方法:

问题导向法

学习方法:

自主探究法

教学过程:

一、形势归纳

小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?

1。有以下数字:15,9,-5,2/15,8,0。1,-5。22,-80,0,123,2。33

(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?

(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?

称整数和分数为有理数。(指点题,板书)

二、自学指导

学生自学课本,根据课本寻找自学的机会

提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

三、展示归纳

1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;

3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

四、变式练习

逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

五、总结与反思:通过本节课的学习,你有什么收获?

六、作业:必做题:课本14页:1、9题

初一的数学教案篇2

教学目标

1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3,体验分类是数学上的常用处理问题的方法。

教学难点正确理解分类的标准和按照一定的标准进行分类

知识重点正确理解有理数的概念

教学过程(师生活动)设计理念

探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如,

对于数5,可这样问:5和有相同的类型吗?5可以表示5个人,而可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而不是整个的数,称为“正分数(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数。

按照书本的说法,得出“整数”“分数”和“有理数”的概念。

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2,教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数这个分类可视学生的程度确定是否有必要教学。

应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

小结与作业

课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

本课作业1,必做题:教科书第18页习题第1题

2,教师自行准备

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概

念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进

行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分

类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

课题:.2数轴

教学目标1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;

2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

教学难点数轴的概念和用数轴上的点表示有理数

知识重点

教学过程(师生活动)设计理念

设置情境

引入课题教师通过实例、课件演示得到温度计读数.

问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

(多媒体出示3幅图,三个温度分别为零上、零度和零下)

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和处分别有一棵柳树和一棵杨树,汽车站西3m和处分别有一棵槐树和一根电线杆,试画图表示这一情境.

(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学

点表示数的感性认识。

点表示数的理性认识。

合作交流

探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

从游戏中学数学做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗?学生游戏体验,对数轴概念的理解

寻找规律

归纳结论问题3:

1,你能举出一些在现实生活中用直线表示数的实际例子吗?

2,如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

4,每个数到原点的距离是多少?由此你会发现了什么规律?

(小组讨论,交流归纳)

归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

巩固练习

教科书第12页练习

小结与作业

课堂小结请学生总结:

1,数轴的三个要素;

2,数轴的作以及数与点的转化方法。

本课作业1,必做题:教科书第18页习题第2题

2,选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

初一的数学教案篇3

教学任务分析

教学目标 知识技能 理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算。

数学思考 在生动的情境中让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中感受转化的数学思想。解决问题 通过经历探索有理数乘方意义的过程,鼓励学生积极主动发现问题并解决问题。 在解决问题的过程中,提高学生分析问题的能力,体会与他人合作交流的重要性。情感态度在经历发现问题,探索规律的过程中体会到数学学习的乐趣,从而培养学生学习数学的主动性和勇于探索的精神,通过故事让学生认识数学在现实生活中的重要性,增进学生学好数学的自信心。重点 有理数的乘方、幂、底数、指数的概念及其相互间的关系;有理数乘方的运算方法。 难点 有理数的乘方、幂、底数、指数的概念及其相互间的关系的理解。

教学流程安排

活动流程图 活动内容和目的 活动1 复习与回顾

活动2 创设情境 引入课题

活动3 学习乘方的有关概念

活动4 应用、巩固乘方的有关概念

活动5 探索幂的符号法则

活动6 应用、拓展有理数的乘方

活动7 讲数学故事

活动8 小结与布置作业

活动9 思考题 回顾小学学习过的一些概念,承上启下

通过创设问题情境,吸引学生的注意力,唤起学生的好奇心,激发学生兴趣和主动学习的欲望,营造一个让学生主动思考、探索的氛围。

通过自主学习,合作学习,培养学生分析问题、解决问题的能力。

巩固有理数乘方的意义,让每一位学生体验学习数学的乐趣,找到自信。体会转化的数学思想。

把问题交给学生,培养学生观察、分析、归纳、概括的能力,体现学生的主体地位。

检验新知的掌握情况,把在幂的理解上容易错的题进行分析、比较,进一步巩固乘方的意义。

通过故事让学生认识数学在现实生活中的重要性,增进学生学好数学的自信心。

梳理知识,学生获得巩固和发展。

有利于学有余力的学生发展他们的数学才能。

教学过程设计

问题与情境 师生行为 设计意图 活动1

问题

1.边长为 a 的正方形的面积是多少?

2.棱长为a 的正方体的体积是多少?

活动2

出示细胞分裂示意图

下图是细胞分裂示意图,当细胞分裂到第10次时,细胞的个数是多少?

shape mergeformat

活动3

问题1

思考:

1.什么叫做乘方?

2.什么叫做幂?

3.什么叫做底数、指数?

问题2

4.在 中,底数a表示什么?指数n表示什么? 就是几个几相乘?

活动4

应用新知,巩固提高

一、填空

1.在 中,15是数,9是数,读作

2. 的底数是,指数是 ,读作

3. 中,-6是数,12是数,读作

4. 的底数是,指数是,读作

5. 7底数是,指数是

6. x底数是,指数是

二、把下列乘法式子写成乘方的形式

1、2×2×2×2×2=

2、(-1)×(-1)×(-1)×(-1)×(-1)×(-1)=

3、 × × × =

三、把下列乘方写成乘法的形式.

1. =

2. =

3. =

活动5

问题1

与 有何不同?

问题2

计算

(1) (2) (3)

问题3

计算:

(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

你发现了什么规律?

活动6

问题1

目标检测

(1) 是数 (2) 是数

(3) (4)

(5) (6)

(7) (8)

(9) (10)

(11) (12)

问题2

拓展训练

你能完成下面的计算吗?试一试.

活动7

问题

棋盘上的学问

古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。大臣说:“就在这个棋盘上放一些米粒吧。第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒、······一直到第64格。”“你真傻!就要这么一点米粒?!”国王哈哈大笑。大臣说:“就怕您的国库里没有这么多米!”

你认为国王的国库里有这么多米吗?

活动8

小结反思:

1、通过本节课的学习,你有什么收获? 你还有什么疑惑?

2、总结五种已学的运算及其结果?

布置作业:

1.教科书47页第1题

2.收集生活中有关乘方运算的例子及趣闻故事

初一的数学教案篇4

一、知识要点

本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

基础知识:

1、大于0【.1mi.net】的数叫做正数。

2、在正数前面加上负号“-”的数叫做负数。

3、0既不是正数也不是负数。

4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

5、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

数轴满足以下要求:

(1)在直线上任取一个点表示数0,这个点叫做原点(origin);

(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;

(3)选取适当的长度为单位长度。

6、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。

7、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。

由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

8、有理数加法法则

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.

(3)一个数同0相加,仍得这个数。

加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。

加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。

表达式:(a+b)+c=a+(b+c)

9、有理数减法法则

减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)

10、有理数乘法法则

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0.

乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)

乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

表达式:a(b+c)=ab+ac

11、倒数

1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。

12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.

13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(exponent)。

根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。

14、有理数的混合运算顺序

(1)“先乘方,再乘除,最后加减”的顺序进行;

(2)同级运算,从左到右进行;

(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即0

16、近似数(approximatenumber):

17、有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。

拓展知识:

1、数集:把一些数放在一起,就组成一个数的集合,简称数集。

一、(1)所有有理数组成的数集叫做有理数集;

二、(2)所有的整数组成的数集叫做整数集。

2、任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。

3、根据绝对值的几何意义知道:|a|≥0,即对任何有理数a,它的绝对值是非负数。

4、比较两个有理数大小的方法有:

(1)根据有理数在数轴上对应的点的位置直接比较;

(2)根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的'数学思想;

(3)做差法:a-b>0a>b;

(4)做商法:a/b>1,b>0a>b.

二、基础训练

选择题

1、下列运算中正确的是()。

a.a2a3=a6 b.=2 c.|(3-π)|=-π-3 d.32=-9

2、下列各判断句中错误的是()

a.数轴上原点的位置可以任意选定

b.数轴上与原点的距离等于个单位的点有两个

c.与原点距离等于-2的点应当用原点左边第2个单位的点来表示

d.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。

3、、是有理数,若>且,下列说法正确的是()

a.一定是正数b.一定是负数c.一定是正数d.一定是负数

4、两数相加,如果比每个加数都小,那么这两个数是()

a.同为正数b.同为负数c.一个正数,一个负数d.0和一个负数

5、两个非零有理数的和为零,则它们的商是()

a.0b.-1c.+1d.不能确定

6、一个数和它的倒数相等,则这个数是()

a.1b.-1c.±1d.±1和0

7、如果|a|=-a,下列成立的是()

a.a>0b.a0或a=0d.a

8、(-2)11+(-2)10的值是()

a.-2b.(-2)21c.0d.-210

9、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水()

a.3瓶b.4瓶c.5瓶d.6瓶

10、在下列说法中,正确的个数是()

⑴任何一个有理数都可以用数轴上的一个点来表示

⑵数轴上的每一个点都表示一个有理数

⑶任何有理数的绝对值都不可能是负数

⑷每个有理数都有相反数

a、1b、2c、3d、4

11、如果一个数的相反数比它本身大,那么这个数为()

a、正数b、负数

c、整数d、不等于零的有理数

12、下列说法正确的是()

a、几个有理数相乘,当因数有奇数个时,积为负;

b、几个有理数相乘,当正因数有奇数个时,积为负;

c、几个有理数相乘,当负因数有奇数个时,积为负;

d、几个有理数相乘,当积为负数时,负因数有奇数个;

填空题

1、在有理数-7,,-(-1.43),,0,,-1.7321中,是整数的有_____________是负分数的有_______________。

2、一般地,设a是一个正数,则数轴上表示数a的点在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度。

3、如果一个数是6位整数,用科学记数法表示它时,10的指数是_____;用科学记数法表示一个n位整数,其中10的指数是___________.

4、实数a、b、c在数轴上的位置如图:化简|a-b|+|b-c|-|c-a|。

5、绝对值大于1而小于4的整数有_____________________________________,其和为___________.

6、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=________.

7、1-2+3-4+5-6+……+20xx-2002的值是____________.

8、若(a-1)2+|b+2|=0,那么a+b=_____________________.

9、平方等于它本身的有理数是___________,立方等于它本身的有理数是_____________.

10、用四舍五入法把3.1415926精确到千分位是,用科学记数法表示302400,应记为,近似数3.0×精确到位。

11、正数–a的绝对值为__________;负数–b的绝对值为________

12、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大

13、在数轴上表示两个数,的数总比的大。(用“左边”“右边”填空)

14、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。

三、强化训练

1、计算:1+2+3+…+20xx+2003=__________.

2、已知:若(a,b均为整数)则a+b=

3、观察下列等式,你会发现什么规律:,,,。。。请将你发现的规律用只含一个字母n(n为正整数)的等式表示出来

4、已知,则___________

5、已知是整数,是一个偶数,则a是(奇,偶)

6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。

7、在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。

8、如果有理数a,b满足∣ab-2∣+(1-b)2=0,试求+…+的值。

9、如果规定符号“*”的意义是a*b=ab/(a+b),求2*(-3)*4的值。

10、已知|x+1|=4,(y+2)2=4,求x+y的值。

11、投资股票是一种很重要的投资方式,但股市的风云变化又牵动了股民的心。

例:某股民在上星期五买进某种股票500股,每股60元,下表是本周每日该股票的涨跌情况(单位:元):

星期一二三四五

每股涨跌+4+4.5-1-2.5-6

第1章(1)星期三收盘时,每股是多少元?

第2章(2)本周内最高价是每股多少元?最低价是多少元?

第3章(3)已知买进股票是付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和1‰的交易费,如果在星期五收盘前将全部股票一次性地卖出,他的收益情况如何?

第4章(4)以买进的股价为0点,用折线统计图表示本周该股的股价情况。

四、竞赛训练:

1、最小的非负有理数与最大的非正有理数的和是

2、乘积=

3、比较大小:a=,b=,则a b

4、满足不等式104≤a≤105的整数a的个数是x×104+1,则x的值是( )

a、9 b、8 c、7 d、6

5、最小的一位数的质数与最小的两位数的质数的积是( )

a、11 b、22 c、26 d、33

6、比较

7、计算:

8、计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)

9、计算:

10、计算

11、计算1+3+5+7+…+1997+1999的值

12、计算1+5+52+53+…+599+5100的值。

13、有理数均不为0,且设试求代数式20xx之值。

14、已知a、b、c为实数,且,求的值。

15、已知:。

16、解方程组。

17、若a、b、c为整数,且,求的值。

1.2.1有理数

七年级上(1.1正数和负数,1.2有理数)

1.2有理数

初一的数学教案篇5

教学目标:

1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:

重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现

教学过程

一、创设问题的情境,激发学生的学习热情,导入课题

二、做一做

出示投影3提问:

1、图1—3中,a,b,c之间有什么关系?

2、图1—4中,a,b,c之间有什么关系?

3、从图1—1,1—2,1—3,1|—4中你发现什么?

学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、议一议

1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

2、你能发现直角三角形三边长度之间的关系吗?

在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”也就是说:如果直角三角形的两直角边为a,b,斜边为c,那么我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

四、想一想

这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

初一的数学教案篇6

学习目标:

1、从实际生活中感受有序数对的意义,并会确定平面内物体的位置。

2、通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会具体-抽象-具体的数学学习过程。

3、培养学生的合作交流意识和探索精神,创造性思维意识。体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣。

学习重点:

理解有序数对的概念,用有序数对来表示位置。

学习难点:

理解有序数对是有序的并用它解决实际问题,

学习过程:

一、 学前准备

预习疑难

二、 探索与思考

1、 观察思考:观察下图,什么时候气温最低?什么时候气温最高?你是如何发现的?

2、想一想:你看过电影吗?在电影院内,确定一个座位一般需要几个数据,为什么?

(1)如何找到6排3号这个座位呢?

(2)在电影票上6排3号与3排6号有什么不同?

(3)如果将6排3号简记作(6,3),那么3排6号如何表示?

(4)(5,6)表示什么含义?(6,5)呢?

3、结论:

①可用排数和列数两个不同的数来确定位置;

②排数和列数的先后顺序对位置有影响。

4、概念:

有序数对:用含有 的词表示一个 位置,其中各个数表示不同的含义,我们把这种 两个数a与b组成的数对,叫做有序数对,记作(a,b)。

三、 理解与运用

用有序数对来表示位置的情况是很常见的.如人们常用经纬度来表示地球上的地点.你有没有见过用其他的方式来表示位置的?

四、学习体会:

1、 本节课你有哪些收获?你还有哪些疑惑?

2、 预习时的疑难解决了吗?

五、自我检测

1、小游戏:

怪兽吃豆豆是一种计算机游戏,图中的标志表示怪兽先后经过的几个位置. 如果用(1,2)表示怪兽按图中箭头所指路线经过的第3个位置. 那么你能用同样的方表示出图中怪兽经过的其他几个位置吗?

2、有趣玩一玩:

中国象棋中的马颇有骑士风度,自古有马踏八方之说,如图六(1),按中国象棋中马的行棋规则,图中的马下一步有a、b、c、d、e、f、g、h八种不同选择,它的走法就象一步从日字形长方形的对角线的一个端点到另一个端点,不能多也不能少。

六、方法归类

常见的确定平面上的点位置常用的方法

(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。