整数乘小数教案5篇

时间:2025-08-11 作者:Brave

我们要明白教案不只是教学流程的罗列,还得有对学生学情的分析和教学目标的设定,​,精心设计的教案可以帮助学生更好地理解知识点,激发学习兴趣,心得范文网小编今天就为您带来了整数乘小数教案5篇,相信一定会对你有所帮助。

整数乘小数教案5篇

整数乘小数教案篇1

教材说明

学生在前几册教材中已经学习过了有关速度、时间、路程之间数量关系的应用题。但是以前学习的这种应用题,都是研究一个物体的运动情况,从这部分教材开始,将要研究两个物体(两人、两车、两船等)的运动情况。这里以相遇问题为主,研究两个物体在运动中的速度、时间和路程之间的数量关系。两个物体运动的情况是多种多样的,有方向问题,出发地点问题,还有时间问题。学生要全部掌握这些是较困难的。本册教材的重点是教学两个物体相向运动的应用题。其中又以“相遇求路程”和“相遇求时间”两种为主。关于两物体相遇,求其中一个物体的运动速度的应用题,放在后面,用列方程的方法解答。

学好两物体相向运动的相遇问题,关键是弄清每经过一个单位时间,两物体之间的距离变化。由于学生在这方面的生活经验较少,往往不易理解相向运动的变化特点。为此教材首先出现一个准备题,通过图示来说明什么叫做“相向而行”。接着通过列表分析了每经过1分、2分、3分后,两个人之间距离的变化,让学生理解什么是“相遇”。然后再通过例3、例4教学“相遇求路程”和“相遇求时间”的应用题。

在例3中,教材通过图示着重说明了小强和小丽两人走的路程的`和就是他们两家之间的路程。但是解答方法可以不同。第一种解法是先求两人各自走多少米,再加起来。这种解法思路较清楚,学生容易理解。第二种解法稍难一些,但是有了准备题做基础,学生就能比较好理解为什么要先求每分钟两人所走的路程的和。这种解法不仅比第一种解法简便,而且是教学例4的基础。

在例4中,教学“相遇求时间”的应用题。这恰好是利用例3中的数量关系进行逆运算。教材没有再详细地进行分析,只是提出启发性问题,让学生想应该怎样解答。

在练习十四中,除了编排了相向运动的相遇问题以外,还有一些稍有变化的题目。例如:相背行驶、不同时出发、间接给出某一车的速度等,为的是扩展学生的经验,让学生更多地熟悉有关两个物体运动变化时的数量关系,同时也防止学生在解题时死套类型或公式。

教学建议

1.这部分内容可以用3课时进行教学。完成练习十四中的习题。

2.教学例3之前,可以先复习速度、时间和路程之间的数量关系。然后说明,以前我们都是研究一个物体运动的速度、时间和路程的关系。现在我们要研究两个物体运动的速度、时间和路程的关系。接着,出示第54页上面的准备题,通过画图或者让两个学生演示,相对走一走,说明什么叫做“同时出发”和“相向而行”。再结合图示或学生的演示,看每分两人距离的变化,让学生在图下面的表中填写数目。学生填完表以后,教师可以组织学生分析表中各个数量之间的关系,弄清两人在相对行走的过程中,经过1分、2分、3分后,每个人走过的米数和两人之间的距离有什么关系。最后再弄清什么叫做“相遇”,相遇时,两个人走过的路程和两家之间的距离有什么关系。

3.通过例3教学相向运动求路程的应用题时,可以画出线段图来帮助学生弄清题意,使学生看到小强和小丽在相遇时两人走过的路程的和,就是他们两家之间的距离。然后,可以提问:“怎样才能求出两人走过的路程的和呢?”可以先让学生试着列式计算,然后组织讨论。使学生明确,先分别求出两人各自走过的路程,也就是各自从家到学校的路程,再加起来就是两家之间的路程。教学完第一种解法后,可以让学生联系准备题中分析过的数量关系想一想,在这题中由于两人同时出发,那么每经过1分钟两人之间的路程有什么变化,到相遇时怎样?求两家之间的路程还可以怎样算?引导学生列出第二种算式计算。做完后可以让学生说一说自己是怎样分析和解答的。在这之后,还可以让学生比较一下两种解法,想一想它们之间有什么联系。从数量关系上看,第一种解法是用两人各自的速度乘时间,得出两人各自走的路程,然后再加起来;第二种解法是根据两人同时出发后相遇,时间相同,可以先算出两人每分钟一共走多少米,也就是“速度和”,再乘时间。从数学知识上看,两种解法的算式之间的联系正好符合乘法分配律。然后,通过例3下面“做一做”中的习题和练习十四中第1~3题,使学生巩固所学的知识。

4.通过例4教学相向运动求相遇时间的应用题。教学时,可以先让学生自己解答复习题。复习前面刚学过的两人相遇求路程的应用题。然后再把条件和问题改成例4,并画图表示出条件和问题,然后引导学生想,已知两地相距270米,又知道两人各自的速度,能不能求出相遇的时间?并且联系例3的第二种解法,启发学生想,“每经过1分钟两人之间的路程有什么变化?”“到相遇时两人共走了多少米?”“那么经过多少分钟两人可以走完这270米,可以怎样计算?”让学生试着列式解答。然后找几个学生说一说自己是怎样分析解答的。在学生做完例4下面“做一做”中的习题以后,订正时也要找几个学生分析一下自己的解法。

整数乘小数教案篇2

教学内容:

教科书第1页例1和做一做,练习一第1~4题

教学目的:

理解小数乘以整数的意义,掌握小数乘以整数的计算方法;培养学生的迁移类推能力,渗透转化的数学思想。

教学重点:

理解小数乘以整数的意义,掌握小数乘以整数的计算方法。

教学难点:

小数点位置的处理。

教学过程:

一、复习导入

1、65×5表示什么?(两种意义)

2、填表并观察比较

(1)p1复习,填在书上

(2)指名口答

(3)观察比较:

第2、3、4栏分别与第1栏比较,因数有什么变化?积有什么变化?

第3、2、1栏分别与第4栏比较,因数有什么变化,积又有什么变化?

(4)引导学生说出一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍......积也扩大(或缩小)10倍、100倍、1000倍......

3、小结导入

刚才复习的整数乘法的意义以及整数乘法中因数变化引起积变化的规律,对我们今天学习的知识很有帮助的。

板书:小数乘以整数

二、进行新课

1、教学例1

(1)出示例1,并读题

(2)列出算式

想一想,这道题怎样解答?有几种方法?

板书:用加法算:6.5+6.5+6.5+6.5+6.5

用乘法算:6.5×5为什么?

(3)理解意义

联系加法算式想6.5×5表示什么意思?

还表示什么?

小数乘以整数的意义同整数乘法的意义相同吗?(结合复习题1想想)

出示:小数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

说明:以前说的求几个相同加数和的简便运算叫乘法只限于整数,现在也包括了小数乘以整数。

(4)探究解法

用加法算6.5+6.5+6.5+6.5+6.5=32.5(元)

讨论乘法计算方法:

能不能把小数乘法转化成整数乘法呢?

汇报交流说说怎样想的?

扩大10倍

6.5─────→65

×5×5

────缩小10倍────(依据是什么)

32.5←─────325

重点思考:为什么要把325缩小10倍才是原来的积?

指出:在具体计算中,把6.5看作65即可,不必另写算式

2、P1做一做

(1)列出算式

(2)你能根据例题的方法计算出这道题的'得数吗?

(3)指名板演,其余自练

(4)集体订正,请板演学生说说怎样想的?

三、巩固练习

1、针对性练习

出示下列各题,说出括号里的数(巩固小数乘以整数计算方法的思维过程)

(1)2.8─→()(2)3.16─→()

×9×9×3×3

─────────────────??

()←─()()←─()

(3)()←─97

×5×5

────────??

()←─485

(此题为发散思维训练)

2、很快说出下面各题的积

495×7=3465205×5=1025

4.95×7=()20.5×5=()

3、P4第1题,指名口答

4、P4第2题,独立练后校对

四、全课小结

今天学习了什么?

小数乘以整数的计算方法是怎样的?

五、布置作业:

P4第3、4题

六、板书

整数乘小数教案篇3

[教学目标]

1.理解小数乘以整数的意义,掌握它的计算方法。

2.通过运用迁移的方法学会新知识,培养类推的能力。

3.培养学生认真观察、善于思考的学习习惯。

[教学过程]

本节课分四个环节进行。

课前谈话:同学们已学习了小数加法和减法的意义及计算方法,这学期要在这个基础上,继续学习小数乘法和除法的意义及计算方法等知识。今天,我们先学习小数乘以整数的意义和计算方法。出示课题:小数乘以整数

(一)复习旧知,引入新知

1.指名板演。(用竖式计算)65×5=976×14=订正时,可让学生说说整数乘法的意义及计算方法。

2.口答。(出示投影片)

(1)填空。5.6扩大()倍是56。9.76扩大()倍是976。

(2)去掉下面各数的小数点后,分别扩大多少倍?3.24.780.0370.06

(3)下面各数分别缩小10倍、100倍、1000倍后各是多少?485853450

3.填表,并说一说你发现了什么规律。(出示投影片)

订正时要注意引导学生先从左向右观察:一个因数不变,另一个因数扩大10倍、100倍、1000倍,积也随着扩大10倍、100倍、1000倍。

再引导学生从右向左观察发现:一个因数不变,另一个因数缩小10倍、100倍、1000倍,积也随着缩小10倍、100倍、1000倍。

最后归纳出:一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍……,积也随着扩大(或缩小)10倍、100倍、1000倍……。

教师谈话:刚才我们复习了整数乘法的意义和计算方法,小数点位置的移动引起小数大小的变化规律,及因数的变化引起积的变化规律,这些知识都是为今天学习新知识做准备。下面我们运用这些知识一起研究小数乘以整数的意义和计算方法。

教学意图:让学生充分回忆旧知识,为学习新知识进行迁移做好准备。教师要注意让全体学生参与,动口、动手、动脑。

(二)运用迁移,学习新知

1.理解小数乘以整数的意义。

出示例1:花布每米6.5元,买5米要用多少元?

读题后,请学生列出加法算式并板书:

6.5+6.5+6.5+6.5+6.5

提问:这个加法算式中的加数有什么特点?这样的加法算式怎样计算比较简便?

(几个加数相同,都是小数。求n个相同加数的和可以用乘法计算比较简便。)

提问:你能列出乘法算式吗?想一想它的意义是什么呢?

(6.5×5,表示5个6.5相加是多少,或6.5的`5倍是多少)

板书:6.5×5

教师:6.5×5是小数乘以整数,小数乘以整数的意义是什么呢?

出示思考题,并组织学生讨论。

(1)小数乘以整数的意义与整数乘法的意义相同吗?(相同)

(2)它们有什么不同?(小数乘以整数中的几个相同加数是小数,而整数乘法中的几个相同加数仅限于整数)

(3)小数乘以整数的意义是什么呢?

讨论后概括出:小数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

练一练,说出下列各题的意义。0.9×463×68.4×15(4个0.9相加的和是多少?6个63相加的和是多少?15个8.4相加的和是多少?)

2.理解法则。

教师:我们学习了小数乘以整数的意义,下面继续研究它的计算方法。同学们可联系前面复习的知识,认真思考,积极发言。

出示思考题,组织学生讨论,并试做。

(1)怎样把6.5×5转化为整数乘法进行计算?

(2)把6.5×5转化为整数乘法后,积发生了什么变化?

(3)要想使积不变,应该怎么办?

讨论后,教师指名回答,并板书学生的思考过程。

答:买5米要用32.5元。

教学意图:让学生初步理解小数乘以整数的意义和计算方法。采用的方法是让学生在旧有知识的基础上运用迁移的方法,通过讨论、尝试,自己探索新知。

(三)反馈调节,归纳方法

1.反馈调节。

(1)完成“做一做”。(指名板演,其他同学在练习本上完成)14个9.76是多少?练习时,要注意行间巡视;订正时,根据学生的问题及时调节。

(2)计算。0.86×70.375×124(指名板演,其他同学在练习本上完成)订正时,要让学生说一说计算时是怎样想的。

2.归纳方法。观察并讨论:例题和练习题每题的积的小数位数与被乘数小数位数有什么关系?小数乘以整数的计算方法是什么?(积的小数位数和被乘数小数位数相同)

总结计算方法:小数乘以整数,先按整数乘法法则算出积,再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。

总结后,组织看课本,让学生提问题。

教学意图:在练习的基础上,进一步理解算理,并通过学生观察、讨论,自己发现规律,总结计算方法。

(四)巩固练习,孕伏发展

1.说出下面各式的意义。0.8×43.5×719.6×12

2.下面各题的积有几位小数?看谁说得又对又快。4.3×80.72×63.726×80.54×7

3.根据282×12=3384,不用计算直接说出各式的积。28.2×12=2.82×12=0.282×12=

4.列出乘法算式,并计算。(全班动笔)(1)5个2.05是多少?(2)4.95的7倍是多少?

5.计算。0.45×1081.056×25(可分组进行)

订正:0.45×108=48.6,1.056×25=26.4,这两题的积的末尾是0,应先数好积的小数位数,点上小数点,再消去“0”。

6.小明看到远处打闪以后,经过4秒钟听到雷声,已知雷声在空气中每秒传播0.33千米,打闪的地方离小明多远?(从打闪起到看到闪电的时间略去不算)解题前,要向学生说明看见的闪电是光,光在空气中的速度是每秒传播30万千米,远远大于声音在空气中的速度。因此从打闪起到看到闪电的时间可略去不记。订正:0.33×4=1.32(千米)

7.课堂小结。小结前,可先让学生提出问题,解疑后,再总结。

8.孕伏发展。

计算6.5×0.56.5×0.82

教师:你们知道这两个算式的意义吗?应该怎样计算呢?这是下节课要研究的内容。同学们如有兴趣,课后可以想一想。

小数乘以整数的意义和计算方法由收集及整理,转载请说明出处

整数乘小数教案篇4

教学目标:

1.使学生在具体的情境中探索并初步掌握小数乘整数的计算方法,会用竖式进行计算。

2.在探索计算方法的过程中,进一步体会数学知识之间的内在联系,培养初步的抽象、概括以及合情的推理能力,感受数学探索活动的乐趣。

教学过程:

一. 创设情境,引入新课。

1.(出示场景图)同学们,你们喜欢逛文具商店吗?我们今天就去文具商店看看。这里也有几位同学在挑选文具呢?看看他们准备买些什么呢?

2.问:你能从图中知道了哪些数学信息?

学生说:水彩笔每枝0.8元。

每本笔记本2.35元。

(出示问题)

*买3枝水彩笔应付多少元呢?可以怎么列算式?

0.8×3=

3.这个算式和我们以前学的乘法算式有什么不同?(一个因数是小数)

揭示课题:小数乘整数

二. 探索计算方法。

1.同学们,小数乘整数怎么计算我们还没有研究过。那么0.8×3的结果是多少呢?你有办法知道吗?请同学们试试看。

(学生练习后交流。)

师:谁来说说看,0.8×3= 结果是多少呢?你是怎么想的呢?

方法一:0.8+0.8+0.8=2.4(元)

师:0.8×3是3个0.8相加,所以可以用加法来计算出结果。

方法二:0.8元是8角。8角×3就是24角,24角用元作单位就是2.4元。

:同学们能利用小数的加法和元角分的知识来计算出结果,采用旧的知识来解决新的问题,这一点做得很好。

2.我刚才发现有些同学想用竖式来计算0.8×3。(出示学生的两种不同的格式。)

问:请同学们看一下,这两位同学所写竖式的格式有什么不同?(学生回答)

是的,一个是把末尾对齐了计算的,一个是把相同数位对齐了计算的。但计算的结果确实相同的。

是怎样得到2.4的呢?我们先来听听他们的想法。(学生说)

情况1:把十分位上的`3和8相乘是24,写4进2,小数点移下来,0 和4相乘得0,加进过来的2就是2.4。

情况2:三八二十四,点上小数点,就是2.4。

……

教师引导:

(1)大家结合这个题想想看,同学们所说的三八二十四,脑子中想的这个8表示什么呢?(8角……)

(2)在小数中,这个8又表示什么呢?(0.8是8个0.1,8个0.1乘3就得到24个0.1)

(3)同学们看一下,我们刚才在计算0.8×3时,是把0.8元看成8角和8个0.1来计算的,是整数8和3相乘得24,再通过推理得到了正确的结果。现在你想想看,这两种竖式哪一种比较合理。

3.(出示问题)买3本笔记本应付多少钱?可以怎样列式?

2.35×3=

(1)这一题是一个两位小数乘整数,猜一猜所得的积会是几位小数呢?

(2)同学们用竖式计算一下,看看积是不是两位小数.

问:你能说说怎样用竖式计算出结果的吗?

2.35是235个0.01组成的,235个0.01×3是705个0.01,705个0.01是7.05

4.同学们,我们刚才练习了两道小数乘整数的题,都是把小数看成什么数来计算的?

指出:小数乘整数,先按照整数乘法来进行计算,再在所得的积中点上小数点.

追问:那么积中的小数点怎么来确定呢?

引导:我们来看.一位小数乘整数所得的积是几位小数?两位小数乘整数,所得的积是几位小数?

这其中会不会蕴涵着什么规律呢?让我们来继续研究研究看。

三.归纳计算法则。

1.探究

出示:a组题; 根据241 ×8 = 1928,猜猜这些小数乘整数。

24.1 ×8 = 2.41 ×8 = 0.241 ×8 =

(1)请同学们看一下这组题。你能根据241 ×8 = 1928,猜猜这些小数乘整数的结果吗?

(学生猜完后)问:你们是怎么猜的?

(2)我们可以用计算器来验证大家的猜测是否正确。

(3)请同学们观察一下,看看积和因数的小数位数有什么联系?(讨论交流)

得出:因数中有几位小数,积就有几位小数?

2.练习

b 组题:根据148×23=3404,直接写出下面各题的积.

14.8×23= 148×0.23= 1.48×23= 0.148×23=

3.通过以上的学习,想一想,小数和整数相乘可以怎样计算?(讨论)

得出:小数乘整数,先按整数乘法进行计算,再看因数中有几位小数,就从积的右边起数出几位,点上小数点。

四.巩固练习,加深理解。

1. 0.18×5= 46×1.3

指名板演,交流评析,说说计算的过程。

并指出,0.90可不可以化简,化简的依据是什么?结果是多少?

出示:两种不同的竖式,看一看,哪一种只正确的?为什么?

指出:小数乘整数,是按整数乘法进行计算,所以计算过程中就不点小数点了。

:如果积是小数而且末尾有0,一般要进行化简。

2. 0.217×4= ×35×0.24=

3 判断下面的计算是否正确。(略)

4.p71. 2. 3.两题

五.全课。

今天这节我们学习了什么?小数乘整数怎么计算?计算小数乘整数时要注意怎么?

六.作业。

练习十二第1题。

整数乘小数教案篇5

教学内容:

教材p2~3例1、例2及练习一第1、2、3题。

教学目标:

知识与技能:

使学生理解并掌握小数乘以整数的计算方法及算理。

过程与方法:

经历将小数乘整数转化为整数乘整数的过程,使学生认识到转化的方法是学习新知识的工具。

情感、态度与价值观:

感受小数乘法在生活中的广泛应用。

教学重点:

理解并掌握小数乘整数的算理,学会转化。

教学难点:

能够运用算理进行小数乘整数的计算。

教学方法:

迁移类推,引导发现,自主探索,合作交流。

教学准备:

多媒体。

教学过程:

一、情境导入

1.谈话:同学们都喜欢哪些运动呢?

(生回答自己喜欢的运动……)

2.导入:是啊,多参加户外运动,有利于身体健康。老师也经常参加户外运动,放风筝就是我的最爱。下课咱们一起去放风筝好吗?

3.提问:但放风筝之前要先去买风筝,所以咱们就先去买几只风筝吧!(展示教材第2页例l情境图)从图中你知道了哪些信息?

引导学生观察并思考:图中他们想买3个元的风筝需要多少钱?你会列式吗?

指学生回答:×3,教师板书:×3。

4.探索:观察这一道算式,它与我们以前学过的乘法算式有什么不同?

生观察后回答:这道算式的因数有小数。

5.揭题:以前我们学习的乘法都是整数乘整数,今天的算式中却出现了小数,这就是今天我们要研究的小数乘整数。(板书课题:小数乘整数)

二、互动新授

1.初步探究竖式计算的方法。

(1)引导学生准确算出一共需要多少钱?学生独立计算,并在小组内交流自己的想法。(师走到学生中,了解学生参与讨论的情况。)

(2)让学生说说自己的想法。

指名汇报,教师根据学生叙述板书,学生可能想出下面几种不同的方法:

方法1:

连加。展示:++=(元)

师:你是怎么想的?

生:×3就表示3个相加,所以可以用乘法计算。(师板书意义)

方法2:化成元、角、分计算,先算整元,再算整角,最后相加。3元×3=9元,5角×3=1元5角,9元+1元5角=10元5角,即×3=(元)。

方法3:把元看作35角,则35角×3=105角=元。

(3)追问:刚才同学们开动脑筋想出了这么多方法,真了不起。如果要用竖式计算,你会算吗?请同学们想一想,并与同桌讨论:如何列竖式计算×3。

引导:出示(边说边演示):

35角

×

105角

×

强调:我们可以把元转化成35角,用35角乘3得105角,再把105角转化成元。注意在列竖式时因数的末尾要对齐。

2.自主探究,进一步理解算理,掌握计算方法。

(1)教师出示算式:×5。

师:同学们看不是钱数了,没有元、角、分这样的单位了,还能不能计算出结果呢?请同学们独立思考,然后在小组内交流计算方法。

(2)学生汇报演示。

可能有两种方法:加法和乘法。根据学生的汇报,展示这两种方法。

(3)比较:(见板书设计)

引导:请同学们比较一下这两种方法,你喜欢哪一种呢,为什么?

生:用乘法比较简便。

(4)追问:仔细观察乘法算式,谁给大家解释一下,你是怎样把乘数转化成整数的?

生:先把小数点向右移动2位转化成72×5=360,得出结果后再把积的小数点向左移动两位就是。

质疑:既然把所得积的小数点向左移动两位,那这个积就应该是一个两位小数,为什么现在只有一位呢?

生:小数的末尾添上或去掉0,小数的大小不变,所以积末尾的0可以直接去掉。

(5)注意:同学们在计算小数乘整数时,想到了用转化的方法把小数乘法转化成整数乘法计算。那么,谁能和大家说说小数乘整数应该怎样计算,计算时应注意什么呢?

指导学生归纳出:计算小数乘整数的乘法,要先把小数看作整数来乘,乘完以后,看因数扩大了多少倍,再把乘出的积缩小相同的倍数。当积的末尾有“o”时,应先点上小数点,再把“0”去掉。

师:(出示教材第2页情境图)我们通过解决买风筝的问题,认识并学会了小数乘整数的计算方法。我们看图中还有几种不同的风筝,如果买3个其他形状的,需要多少钱呢?能不能很快地算出来?

学生独立计算,汇报交流。

师:同学们顺利地买完了风筝,那我们就一起把风筝放飞吧!

三、巩固拓展

1.教材第3页做一做第1题

想一想:小数乘整数与整数乘整数有什么不同?

2.教材第3页做一做第2题

同桌之间相互谈谈是怎样点小数点的。

3.指名板演教材第3页做一做第3题

4.不用计算,你能直接说出下面算式的结果吗?

148×23=3404

×23=()

×23=()

×23=()

()×()=

四、课堂小结。同学们,这节课你们都学会了哪些知识?(学生自由发表想法)

作业:教材第4页练习一第1、2、3题。

板书设计

小数乘整数

求几个相同加数的和的简便运算。

×

×

360

÷100

方法2

方法1

×100

最后的0可以去掉

教学(后记)反思: